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A CLASS OF STABLE TRANSMISSION ALGORITHMS FOR VARYING USER MODELS

Michael Paterakis, Leonidas Georgiadis, and P. Papantoni-Kazakos

The University of Connecticut
Department of Electrical Engineering and Computer Science
Storrs, Connecticut 06268

ABSTRACT

We propose and analyze a class of stable transmission algorithms whose operation

is independent of the number of users in the system and the arrival process per user,

as long as the latter is i.i.d. The algorithms in the class are a combination of a

rand:mm 2zcczz and rpcvation techniques, they are synchronous, and they are

studied in the full sensing broadcast environment. For any finite number of independent

users in the system, and any i.i.d. arrival process per user, their throughput is one.

Given some i.i.d. arrival process per user, given some algorithm in the class, its

limit throughput, when the user population tends to infinity, is lower bounded by its

throughput in the presence of the limit Poisson user model. The latter throughput is

also attainable; it coincides with the limit throughput, when the users are Poisson.

Due to the above, it is concluded that the limit Poisson user model is an indispensable

vehicle in the study of the algorithms in the class.

This work was supported jointly by the National Science Foundation under the grant
- ECS-85-06916, and the U.S. Office of Naval Research under the contract N00014-85-K-0547.
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1. Introduction

We consider a broadcast packet radio network with independent and identical

users. We require that the time of the transmission channel be slotted, and that

transmissions be then synchronous (each packet transmission may only start at the

beginning of some slot). We assume ternary feedback per slot (empty versus success

versus collision), full feedback sensing by each user, and no propagation delays. We

also assume that a collision results in full destruction of all the involved packets;

th. ,,, rtran2mision is then necessary. Given the above general description of the

overall system, we wish to provide multiplexing techniques, whose operation is independen

of the number uf users in the network and of the arrival process per user (assuming

that the latter is i.i.d.), whose stability is guaranteed even when the nu1mjer of

users tends to infinity, and whose delay characteristics are uniformly good within their

stability region. In this paper, we propose and analyze a general class of such multi-

-U plexing algorithms, whose members attain throughput one for any finite number of users,

and are stable when the number of users tends to infinity. An important part of our

work corresponds to a concrete justification of the limit Poisson user model, as an

indispensable vehicle in the study of random access algorithms.

• .We assume that each one of the independent and identical users in the system has

* the following characteristics; (i) His packet generating process is arbitrary i.i.d.,

with mean X packets/slot, and finite second moment. (1i) The user possesses a buffer,

where he stores his nontransmitted packets on the first come-first serve basis. The

earliest stored arrival lies on the head of the buffer queue, and is called the head

0pa cket_ in the queue.

Time will be measured in slot units. The integers, T ard t, will denote slot

indices, where slot T occupies the transmission interval (T,T+lI. The ternary feed-

back corresponding to slot T, will be denoted x.,, where xT, =( , xT=1 1, and X, rcpre';ent

respectively empty, versus success (busy with a single pack, t) verso roW isi'n slot T.
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We will assume that the system starts operating at time zero; that is, at time zero

the queue of each user is empty. A user is called active at time T, if his buffer

queue is nonempty at the beginning of slot T; that is, some arrivals in (0,T] are

then stored in the queue. It will be also assumed that at each time T, each user knows

A the overall feedback history, xt; O<t<T-l.

-. 2. The Class of Algorithms

Let the queues of all users be empty at the beginning of slot T-1. Then, at

time T each active user transmits his head packet, and a collision resolution Drocess

begins. This process involves only the head packets of the active at T utr., and the

initial contention among them is resolved via some random access algorithm (RAA),

whose general characteristics will be described below. At the time T above, a

collision resolution interval (CRI) starts. During its progress the users who were

inactive at T withhold transmissions, and only the packets that were queued at T

are transmitted. The CRI ends at the time T, when it is known by all users that all

the latter packets are successfully transmitted. Then, at time T'+I the next CRI

begins, with the transmission of the head packets of all the active at T'+l users.

Given some RAA, let T correspond to the starting point of some CRI. Then, the

algorithim operates as follows. Let t be some slot within the CRI, such that xt=l and

Xtl l. Then, the successful at t user reserves the channel, to sequentially transmit

* all the packets which were stored in his queue at the beginning of slot T, while the

rrcn.in~fin users withhold transmissions. After all the above packets are successfully

tralmitte'd, an empty slot, say t', is allowed. Upon observing xt.=0, all users in

,th. vvte-m know that the transmissions by the successful at t user have ended. Then,

* it ti:,, t +1, the collision resolution process among the head packets is picked tip

'i"iglil at the point where it was left (by resetting t'=t and x .=xt=1), and continues
tt

7i dir'tatd by the RAA. As claimed before, the CRI clearly ends with the successful

tranomissic-i of all the packets that were queued at time T. It is also clear that if

the CR1 ends at T', then x_-=0 and XT l. Regarding the RAA used by the algorithm,
-.

• .• •
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we require that it be stable, and it possess the following general characteristics:

Let us assume that at some time instant t, the arrival interval (O,t'] ; t'<t has

-. just been resolved by the pure RAA. Then, the RAA examines next some new arrival

interval (t',t"], by first allowing all arrivals in it to transmit in slot t+l,

and resolves it completely before examining a new interval. Let fk,d denote the

* ."number of slots needed by the RAA to resolve the latter interval, given that

its length is d and that the number of arrivals in it is k. Let Yk denote thek

number of slots needed to resolve a collision of multiplicity k. Then, for

- denoting stochastic dominance, the RAA is such that,
st

E{t Ef- EtC 2  }Eft 21L (2 )
k,d k k k ,d k k

2[ (2) 2

<L k ] + < 0 (.a)

k- k-co

- ; V k (1.b)k st k+l

We point out that the above conditions are satisfied by most stable RAAs. A

simple such RAA is Capetanakis' algorithm [1], both in its nondynamic and dynamic

forms. We note that in the presence of some RAA in the class considered here, the

earlier description of a CRI is consistent.

*g 3. Analysis-The Finite User Population

We now proceed with the analysis of our class of algorithms, for the finite

user population, and the user model described in the introduction. The limit analysis,

* when the user population tends to infinity, will be presented in section 4.

Consider one of the algorithms in the class (given some RAA as in section 2).

Let the system start operating at time zero, and let us consider the sequence (in

* time) of the CRIs that are generally induced by the algorithm. Let C. denote the

length of the i-th CRI, where i>l. Then, the first CRI corresponds to the empty

- slot zero; thus, CI=I. In addition, the sequence {C. ; l<i<m} is clearly a Markov
1i -L

-----------------------------------
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chain. Let Lk be as in (1), and let us also define the following quantities.

Lid E{Ci+I C.=d (2)

Pi(kLd) The probability that the number of active users at the
beginning of the (i+l)-th CRI is k, given that C.=d.

1

Let us assume that the number of users in the system is M<-, and let the packet

generating process per user be i.i.d., with mean X packets/slot and finite second

moment. Let p0 denote the probability of zero arrivals within a single slot time

interval, as induced by the above process. Then, we easily conclude,

M d -1 M
Lid = k Lk p. +  d [l-P 0 ] E k pi(k 1d)d 1,d k=OkP k=0

M
= E Lk p(kjd) + MXd (3)

k=O

where,

Lk
! 

M) d (M-k) dk

p(kld) = Pi(kjd) = k P k [I-p0] (4)

We now express a theorem, whose proof is in the appendix.

* Theorem 1

Given M<-, the sequence {C i  of CRI lengths induced by the algorithm is

clearly a Markov chain. We make it irreducible and aperiodic, by properly choosing

its state space. If MX<l, then the chain is also ergodic.

I
Let us now consider the packet arrivals in the system, as they evolve in time.

Let V denote the delay experienced by the n-th packet arrival, as induced by the

n

algorithm; that is, the time between the arrival of the packet and its successful

tran-,mission. Let the sequence {T be defined as follows: Each T. corresponds

to the beginning of some slot, and T 1:. In addition, each Ti corresponds to the

ending point of a length-one CRI. Ti+ 1 is then the ending point of the first after

I
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T i unity length CRI.

Let R. ; i>O denote the number of successfully transmitted packets in the time

interval (0,Ti. Then, A. = R -R ; i>l denotes the number of successfully
i+l- i -

transmitted packets in the time interval (Ti,T where R0=0. The sequence
1i+l'0

{A.} is clearly a sequence of i.i.d. random variables; thus, {R}i>0 is a -enewal

-. , process. In addition, the delay process {V induced by the algorithm is regenera-
n n>l

tive with respect to the process {R.} and the distribution of A. is nonperiodic,

for each i. The regenerative theorem in [2] then applies, in the folloing form:

If, A
A =AE{AI <-, and W = E .V (5)

1i= Il

then, V. converges in distribution to a random variable V , and,1

D - E{V I = WA (6)

lim n Z D. =lim n' E = WA- 1 ; w.p. 1 (7)
n- co i=l n- o =

We note that (7) holds even if the second moment of the packet generating process

per user is not finite. The latter property is necessary, however, for the satisfac-

tion of expression (6).

Due to the above, if we compute the exp ected values A and W in (5), and show that

they are both finite, then, we can guarantee convergence (in distribution) of the
0

delay V. ; that is, existence of steady state. In addition, we can then compute the

r -1
expected per packet delay, as D = W A . Note that, given >1 and X, we have,

* A = , where H l Ti+ -T } ; i>l (8)

W, now express a theorem whose proof is in the appendix.

ie(-)rem 2

(;iven i-' , let the packet generating process per user be i.i.d., with finite seCond

moment, and mean A. Let also .IA <.. Then, the expected valu-e; A and W are both bounded,

and so is then the expected per packet delay D.
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We note that given some specific RAA as in section 2, upper and lower bounds

on the expected per packet delay D can be computed, via methods as in [2].

Remark

Given M and A, the quantity X , MX is called the input rate of the system.

Given NX, and some multiplexing algorithm, let us define, p n L 1 , where
Ni=l In

I equals 1 if the n-th slot is a success slot and it equals zero otherwise. Then,n

is called the output rate of the system. Let D. be the delay of the i-th
I

successfully transmitted packet, as induced by the adoLed multiplexing technique,

,nd let V be the steady state delay. Given M,X, and some multiplexing technique,s ,N

let us define:

• A

(1) sup(A , : X

' (2) = sup(X M  V < , w.p.l) (9)

* A
X (3) = sup(X : E{V } < cO)

To this point,we have shown that if the multiplexing technique used is one of

our algorithms, and if the packet generating procPss per user is arbitrary i.i.d.,

then given any N1 we have,

()= (2) = 1 (10)

If in addition the second moment of the packet kenerating process per user is

finite, then,

(1) = (2) = A (3) = 1 (1 )

ihus, tor either one of the quantities in (9) beinr, i ,, mc',i ,rt, of tlroughput

it i' cone ,d d that, for any number I of users, and icn i . . , p k, , ,erat ing

pr,,-;s per us;er that possesses finite si-c Ind Mm ent, 1!w Y' h , , ,-,

lgoriti m in our class i.; one. ',,o ca: il ;o tht-n ,, n h,
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lim X.I(1) 1 lim X,(2) 1= im A,(3) 1 (12)

We note that the quantity X (3) in (9) represents the strongest definition of

throughput, and it is perhaps the most meaningful, since it implies finite expected

per packet delays. It is very important to point out that,

ir X, (3) = lim sup(X E(D S,\ < o)> X (13)

where, for X denoting system input rate, we deoine,c

=c sup(), : lim E{V } < c) (14)
c c M-K s,M

Therefore, lim X (3) = i, does not imply X =l. Yet, X represents the meaningful
> c c

definition of throughput in the limit where the user population tends to infinity,

since it is then implied that the limit expected per packet delay is finite. We

will name X , the limit throughput of the algorithm, at the specific arrival process
C -

per user.

4. The Limit User Population

In this section, we analyze our algorithms in the limit, where the user population

tends to infinity. We maintain the user model presented in the introduction, and we

2
denote by X and 3 the mean and the second moment of the per user i.i.d. packet generat-

ing process. As in section 3, we denote by p the probability of zero arrivals per

slot, as induced by the latter process. Given M users in the system, let us denote by

p,,(k) the probability that k previously inactive users become active within a single

slot time interval. Then,

" p 1-k kp, (k) = ) . ( I'p (15)
k p0  - 0 )

Let us now allow >! increase to infinity, and \ simulta-ieou siv deere.,5e, in the(

f, ,wjng ; wi ', tor some g iven in (0,1):

r >.) (lE)

4'



The following theorem is basically the Poisson theorem [4j, where p0 increases

with increasing M.

Theorem 3

k
(i) If lir (l-p 0 ) = c < co, then lir pm(k) = e

If the limit lir M(l-po) does not exist, neither does the limit lir p (k).

(ii) If in addition to (16), it is also required that the mean of the limit distribu-

tion be equal to the limit of the mean, then 6=c.

Theorem 3 states that independently of the arrival process per user (as long as

it is i.i.d.),if it exists, the limit of the cumulative arrival process is Poisson.

If for some given 6, the conditions in part (ii) of the rheorem are imposed, then

the intensity of this Poisson process is 6.

Let now CRAR be the name of some algorithm within the class described in section

2. Let this algorithm attain throughput X (by every definition in (9)), in the presence
0o

of the limit Poisson user model (infinitely many independent and identical Bernoulli

users). For Lk as in (1), let us define:

i L , and = lim k Lk k

(17);" -Il (+)-1

(1+c) , and A 2

whore, as well known,

'1 2

Ic .- in r.o ult of this section is then stated in the fol low in: theorrm, whoc;e

r)) 1; r,.sent, I in subsection 4.1 below.

* C,,unSidlr the use.r mndel in section I .nd in th,: b ginnin;' of this secti,,n, ,hr

- . Lt tht, C RAP h,,c i_ and let Z) he then (ef i ned ;1s in sect ion 3. Tlln,

0
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(i) If, as the number M of users increases, the quantities A and o 2 decrease

so that,

* MO2
lir MA = < lir-a <
M-Ko 1 1-*01

then,

lim E{V } < co

(ii) Given the CRAR, and given Poisson users, let MA 6 ; V 1.

Let also > 2 Then,

lim E{O }=o

* We note that the condition k < l in (1) is only used in part (ii) of the
k- k+1

st

theorem.

Remark

Due to theorems 3 and 4, the following important conclusions are drawn:

1. The limit Poisson user model is valid. For any i.i.d. arrival process per user,
* it represents the only possible limit of the cumulative arrival process.

" 2. Given some algorithm within the class in section 2, let X be its throughput in the
presence of the limit Poisson user model. Let X be known with uncertainty; that
is, Xc(C 1 ,C2 ), for some constants Cl<C2. Then, given any i.i.d. arrival process
per user, given that the second moment of the cumulative input process is finite,
the limit throughput Xc of the al orithm is lower bounded by 61. Furthermore, if
the users are Poisson, then, £i<Xc<£2. For many of the known algorithms, t2-Cl is
vey close to zero.

The above conclusions provide a concrete justification of the limit Poisson user

model, as an important vehicle in the study of our algorithms. If in the presence of

the above user model, the throughput of some algorithm in our class is A , then, for

inv -:iniOlative input rate in (0, ), stability and good delay characteristics are

,lr mtuel, independently of the number of users in the system, and independently

: [l. rcit ic i. i.d. arrival process p(,r user.

11 i, ,t 'hor ,m 4

Con .ider the user model in the, introduction, and some algorithm in our ('lass,

whose thiroughput int i he pre senTC(e Of the I Imit Poiqson u -or model is . Given \1
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users in the system, let d, be the steady state probability that the Markov chain

Ci}. of CRI lengths is in state d, and let I be then the steady state CRT length.
' i>l s M

Let 0- be as in part (i) of theorem 4. Given M, and given that the algorithm starts

at the end of a length-d CR1, let Hd, M denote the expected number of slots needed to

the end of the first length-one CR1. Then, we express the following three lemmata,

whose proofs are in the appendix.

Lemma 1

If lim MV.< , then lim E{U }<

Lemma 2

if lim MX< and lim Ma <-, then lim E }<00
-000 M- s,M

Lemma 3

If 1-I , then I1  = -i E{ s,}<oo ; Tr
lM lI S M

The expected values E{Z I and E{ } are used to bound the expected value
S, s,M

SE' , in theo n 4. Then, part (i) of the theorem follows from lemmata 1,2, and 3.

ie spec ifics are shown in the appendix.

lut us now focus on part (ii) of theorem 4. Given M users in the system, given

me algorithm in our class, let Td, M denote the steady-state probability defined

,boir i:m;, of this subsection, let t denote the length of the n-th CR1, and
n ,M

. ,,denot. the steady-state CR1 length. Let us also define,

) 9 where I is some positive integer. (18)

r. , - tv lemmata, whose proofs are in the appendix.

i' i;er in the system, and any algorithm in the class,

S



|, , . -- - - . . . , , . .. .. . .- ; -- 5- : - " ' ' : " " - .

s-1i-

Lemma 5

For Poisson users in the system, and any algorithm in the class,

(i) uri  d = d that is, the limit converges for every d.
Sd,J(M) d t-M -

(ii) If, lim d r d,J(M) = E{ J } < co (19)
d=l dOs,J(M)

then, lim E d TT dJ(M)= d 7d (20)
1M- d=l d=l

In the proof of lemma 5, the rer4'it in lemma 4 is used. Lemma 5 is finally

used to prove part (ii) of theorem 4. The latter step is included in the appendix.

5. Performance Evaluation of a Specific Algorithm in the Class

In this section, we study the performance characteristics of a specific simple

algorithm, which belongs to the class described in section 2. In particular, the

RAA used by the algorithm is either the nondynamic or the dynamic form of Capetanakis'U
protocol [1]. In the former case, we name the algorithm CCRAR, while in the latter

case we name it DCCRAR. In the presence of the limit Poisson user model, the respective

throughputs, Xo(l) and Xk(2),of the above two forms of the algorithm are easily computed,

via simple modifications in the equations in [11, where the DCCRAR utilizes a length-A

initial arrival interval. It is found that:

Xo(1)= 0.26

(21)

o(2) =0.31, for A=4

In addition, for both the CCRAR and the DCCRAR forms, the quantity X2- 1 in

part (ii) of theorem 4 is practically equal to zero. Thus, the throughputs X,(l) and

*A(2) are attainable; when the users in the system are Poisson, the limit throughputs

of the CCRAR and the DCCRAR are respectively equal to I) and X'(2).

. We considered the operation of the CCRAR and the DCCRAR, in the presence of

" P1)isson users. For various numbers, M, of such users, and for various values of the

04
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system input rate, we computed upper and lower bounds, D(U) and D(L), on the correspondin

expected per packet delays D. In the computation of those bounds, we utilized the

* methodology developed in [2]. We omit the specifics of this computation, to avoid

redundancy and presentation of tedious but routine expressions. The computed bounds

are included in tables 1 and 2, together with the corresponding expected per packet

* delays induced by TDMA. We note that for the CCRAR, only upper bounds were computed,

*" because the computation of lower bounds presents analytical difficulties. From tables 1

and 2, we observe that for relatively high input rates, TDA is superior to CCRAR and

DCCRAR. As the number of users increases, however, the delays induced by CCRAR and

DCCRAR remain uniformly lower than those induced by TDMA, for a high range of input

0 rates. When the number of users tends to infinity (for all practical purposes), so

do the expected delays induced by TDMA, while those induced by CCRAR and DCCRAR remain

bounded and uniformly good, for input rates in respectively (0, 0.26) and (0, 0.31).

We note that when the number of users is 256, the expected delays in tables 1 and 2

* are practically the same with those induced when the limit Poisson user model is

- present.

6. Conclusions

The algorithms in this paper are a combination of a random access and a reserva-

tion schemes. The head packets in each user queue are involved in collisions for

channel reservation, where those collisions are resolved by some random access

algorithm with general characteristics. The operation of our algorithms is independent

of the number of users in the system, and of the packet generating process per user,

as long as the latter is i.i.d. and possesses finite second moment. In addition, when

the user population tends to infinity, the throughput of each algorithm in our class

is identical to that induced when the limit Poi son user model is present.

We note that for any finite number of users, our algorithms attain the same

throughput as TDMA\, while the operation of the latter depends on the number of users

in the system. Given a small number of users and high input rates, TDMA induces lower

@4
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delays than our algorithms do. However, for any arrival rate, as the user population

increases to infinity, so do the delays induced by TDMA, while the delays induced by

each algorithm in our class remain bounded and uniformly good within the corresponding

stability region. In contrast to pure random access schemes, the algorithms in our

class attain throughput one, for any finite number of users in the system. In contrast

to the ALOHA algorithm in [3], our algorithms are stable even when the user population

tends to infinity. Given any finite number of users, our class is also superior to

pure random access schemes, in terms of delays.

.0-

U

02

.0 + , • . . + . - - - . " . . . ' " : - ' ,



WWLLWWWWW:Wwwwwwwwiwwwwwwwwi

%. -I I oO %D 110- 010r1-- r4 I-

C;a ;C -0 10 IC OCOCOCI-1I a 44 ;-4 ;

WWUJLJWWWJILIJWWLWWWWIWWWWWUWWIl

Nl -~ \N \T m w 1O I - -4 r- -I 13 0 mO 1 14 N Nl '3* -I 0 wC I
M0. Ln WO N MO.- N I e) 10 MA W N 10M N I 1) M0 MA W N 10 (- N

- - - - - - ----------------------------- ----------

z f) C .- rLA 0 -4 M -, I r-4 L)CDLn W .1 -X n 0I
CD CD 4N N (N I 00)-C) -N N\'Cj If

* 4

-4IN-4 NNN NI-U NNNNnUIIAI -
OC)OCDO OOO I -4-4--4-44-4- I N N N N N N N N I o m m ) C I

ID -4NNa'r.--am 4Tma m% I o- w r-4aNNwNN i ,DNNT NN- N I m- r-m.)a

CD - NWWW O uW M % I MWNW, rwww r4w I MWTWwCWoW -W -4r- I WWW-W 00a U - 4CjI J 1 1

N N N tL) 1 -4 - N N) Ma' 14 -I r'? O O-4 4')- M r-4 O 0. 4. 4 w C 0
CD ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ C 0 Dmmm01m )C D0 m mUm C DQma0C

.A~ . I .- 4. . . 4NN+I

N-C)C)NfNNN1m ' I m m m aN r-0 a I N4 4 4N 1 1 wI,\ -N- -4 m N --4wN11 m0000000t mr-0 1 00000000 D I 00000m m00, I 00000N \ m00 I

o0 c0 LA -4 N j 10 a' N I ) c0 c14 LA r' Nj 10 c3 N I 0 'N -4 N r~ ~ jI c0 c0 LA N 10 -4 I

-------------------------------------------------------------------- -------- --------

0 ~ ~ ~ ~ ~ ~ ~ 0 . 00 NNNNI00 -4 ND No ND ND I 0 0 N N N N N NI
..............................................................I........................I.........................



M Input Rate D(L) D(0 1) t r TI)mA

- 4 0.050 4 0.16852E+01 0 .17049E+01 0.510!2E+0 1
(-4 0.100 4 0.19654E+01 0.20530E+01 0 . '2'E+0 1

.. 4 0.150 4 0.24170E+01 0.26506[ 01 0 LQ +9+01
4 0.200 4 0.31962E+01 0.37294E+0l 0.3'999LE01
4 0.250 4 0.47188E+01 0.59201E+01 0 L6666E+01I

,.4 0.300 4 0.87670E+01 0.11920E+02 I0 38571E+01 

4 0.350 4 0.57818E+02 0.85730E+02 0 tO4769E+01

""8 0.050 4 0.17117E+01 0.17317E+01 0.52105E+01 I
_ 8 0.100 4 0.20459E+01 0.21373E+01 0 .5(4444E+0 I

I 8 0.150 4 0.26231E+01 0.28780E+01 0.57058E+01 I
I"8 0.200 4 0.37479E+01 0.43793E+01 0.59999E+01 I
I-8 0.250 4 0.65342E+01 0.82228E+01 0.63333E+01

I'8 0.300 4 0.21595E+02 0.29529E+02 0.67142E+01 I

16 0.050 4 1 0.17?49E+01 I 0.7451E+01 0.94210E+01

16 0.100 I i 0.2086SF+nlI G.,1!OIE+01I 0.98888E+01

16 0.150 4 .273O5E101 i 0.29964E+01 0.10411E+02

16 0.200 4 I 0. u535E+01 I 0.47389E+01 0.10999E+02

16 0.250 1 4 0.77353E+01 0 0.97453E+01 0.11666E+02

16 0.300 4 I 0.44989E+02 I 0.61639E+02 0.12428E+02

32 0.050 4 0.17316E+01 0.17519E+01 0.17842E+02

32 0.100 4 0.21075E+01 0.22019E+01 0.18777E+02

32 0.150 4 0.27865E+01 0.30582E+01 0.19823E+02

1-32 0.200 4 0.42219E+01 0.49373E+01 0.20999E+02
'-32 0.250 4 0.84884E+01 0.10700E+02 0.22333E+02

n 32 0.300 4 0.89691E+02 0.12301E+03 0.23857E+02
- - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- -

64 0.050 4 0.17349E+01 0.17555E+01 0.34684E+02

64 0.100 4 0.21180E+01 0.22128E+01 0.36555E+02
64 0.150 4 0.28151E+01 0.30897E+01 0.38647E+02

i 64 0.200 4 0.43105E+01 0.50416E+01 0.40999E+02
* 64 0.250 4 0.89143E+01 0.11240E+02 0.43666E+02

I'64 0.300 4 0.17037E+03 0.23379E+03 0.46714E+02

1128 1 0.050 1 4 1 0.17366E+01 0.17569E+01 0.68368E+02
1128 1 0.100 1 4 1 0.21232E+01 0.22183E+01 0.72111E+02
1128 0.150 4 0.28295E+01 0.31056E+01 0.76294E+02
1 1128 0.200 4 0.43560E+01 0.50951E+01 0.80999E+02
1128 1 0.250 1 4 1 0.91411E+01 0.11528E+02 0.86333E+02
1128 1 0.300 1 4 1 0.30306E+03 0.41598E+03 0.92428E+02

1256 0.050 4 0.17374E+01 0.17577E+01 0 .13573E+03
(256 0.100 4 0.21257E+01 0.22209E+01 I0.14322E+03
256 0 .150 4 0.28368E+01 0.31137E+01I 0.15158E+07-

1256 1 0.200 1 4 1 0.43789E+01 0.51221E+01 0.16099E+03

W 1256 1 0.250 1 4 0.92579E+01 0.11675E+02 0.17166E+03
1 256 0.300 4 0.49121E+03 0.67432E+03 0.18385E+03

Table 2

Expected per Packet Delays

Poisson Users - The DCCRAR Algorithm

.7- .. "7.- C-.., . .
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Appendix

Proof of Theorem 1

From (1), we have Lk <-; Vk<° . Then, from (3) we easily conclude that,

* -i

lim d Ld = MA (A.1)
d-cod

which implies the following: Given E>O, there exists d , such that:

Ld < (MA + C)d ; Vd>d (A.2)

Let N denote the set of natural numbers, and let u6 define,

B - max(O,L1 -(MA + £),...,L k- k(MX + c),...,Ld -1-(do-l)(MX + ))

Then, due to (A.2) we conclude,

Ld < (Mk + £)d + B ; VdN (A.3)

E{C } = E{L d } < (MA + 6) E{C k } + B ; Vk>l (A.4)
k+l d k

Let x = MX + E<l. Then, (A.4) gives,

*k kk 1-ck  k 1-at
EiC k+1 } < L E{C} + B = + Bk~1l-----1--

< I + B < ; Vk (A.5)

1-a

Since, given any £>O, such that MX + C<I, we have that E{C k+} < ; k,

then we conclude that the chain {CA. is ergodic, if M><1 .
1 i>1

Proof of Theorem 2

Let us consider some CR1, and let there be some packet arrival within the

time interval that corresponds to Its length. Let w be the length between the arrival

instant of the packet and the end of the CRT. Let 0 be the length between the ending

point of the CRI, and the time instant when the successful transmission of tile packet

just ends. Let us then define.

-', ' . • , ..' _ , : . , . .. J * " * . . . . . . ......- ' " 'I ' . ' " - i t ;
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d :The sum of the lengths w of all packet arrivals within some CR1,
given that the length of the CR1 is d.

z The sum of the lengths e of all packet arrivals within some CR1,d given that the length of the CR1 is d.

p(Zld) Given that some CRI has length d, the probability that the next
CR1 has length 1.

h The length between the end of some CR1, and the end of the first afterd that length-one CRI, given that the length of the former is d.

wd  The cumulative delay of all the packets that are successfully transmitted
within the time interval that corresponds to hd -

Y[ -,d = E,d Wd = E{wd} 11d = E{hd} Zd = E{z d}

From the operation of the algorithms, we then easily conclude that the following

e aequations hold.

H d  E Z p(Zld) +E lil p(/ld) (A.6)

Wd = Zd + Yd + E W1 p(/jd) (A.7)Z=2

Using the theory of infinite dimensionality linear systems, we can express

the following theorem, whose proof is identical to the proofs of the parallel theorems

in [21, and is omitted.

* Theorem A

Let MX<l. Then, the system in (A.6) has a nonnegative solution, which is also

unique within the class of quadratically bounded sequences. Let in addition the

* packet generating process per user have finite second moment. Then, the system in

(A.7) has a nonnegative solution, which is also unique within the class of quadratically

bounded sequences.

Since W in () and Ii in (8) are respectively W and Ii , the conditions in

theorem A aiso gutarantee boundness of 1 and W.
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a.3

"* Proof of Lemma I

Clearly, E{U } = d 7T On the other hand, from (A.5) we conclude

d=l
that for every M and for MX<l, there exists bM <-, such that, E{C }<b , Vk. Then,

by Fatou's lemma we conclude that,

E{ s M} <bM <," VIM, and MX = 5<1 (A.8)

Now, from the condition lim k Lk < in (1), we conclude that there exist finite
k- -k

positive constants c and p, such that lim k Lk = c, and such that, for every E>O,

kk
we have,

Lk < (c+c) k+p ; V k (A.9)

* Substituting (A.9) in (3), and for p0 being as in section 4, we obtain,

Ld < (c+c+l)MAd + p (A.10)

Thus,

E{zsM} Z Ld 7 d,M < (c+C+l)MX Zd7Td,M + P~~d=1 ~ sM d=1

= (c+6+l)MX EU } + p (A.11)

where MA = 6. Provided that 6<(c+6+1) - , (A.11) gives,

E{sZ ,} < p[l-(c4++l)MX] = p[l-(E+c+l) 6] ; VM, Vc>O:

- 6<(c+E+I) (A.12)

Then,

1-m E ,I pl-(c+)
- I ; if lim MA < (c+l)

-1

•M ') s -- M +

Proof of Lemma 2

(2)
Let p(kjd) be as in (4), let Lk and L be as in (1), and let us define,

(2) EC I C. d ; Vi. Then, given M, the inequality (A.14) below can be

easily established, where p0 is as in section 4, and where,

............ . ...-... .........



p.1-.

M(l-p 0 ) < N\ (A.13)

M~ -i
,. ).(2) 2.2 , d 2

L d Lk  p(kld) + 2 [i-pg] Z k-p(k!d) +
d.k=O k=O

d
+ 2,d [1-P d] 2 k Lk p(kjd) (A.14)

k=0

At the same time, we clearly have,

F I2 = . (2) -= d 2 M (A.15)s,M t d d,Md,d=l dd=l

- -2 (2

(i) From the condition lim k L ( 2 ) < in (1), and for M <I , we can show, in parallel
k---,

to the proof of theorem 1, that there exists finite constant b, , such that

E{Ck< bj ; Vk, VM. Then, bv Fatou's lemma we conclude,

Eit b .'l and M = '1 (A.16)s, M >1 '
- (2).

(ii) From the condition jim k L , wt conclude that there exist finite positive
k -- I ( 1) 1

c._ntants y,., and ,, uch th,, i I i 7i t, and such that for every F>O

j wr hrave,

1.(2) k(2+)k +§k + 17

Substituting the bounds in (A.9) and (A.17) , in inequality (A.14), we obtain,

*g 9

,( d d7. -+) )[M(l-p 0 ) ] + 1M(1-po) [? + 3d K).  +

%0

+ 2dM+\ + ;v LI'' (A.1)

* In addition, we have,

I P (1-) d , I(]-Po) M\ A.19)
0 -0

From (A. 18) and (A. 19), we obtain,

(2) 9 '

*L, (M)[t+r-+2c]d + MN [4-MA + + ": ; V, .0 (A.20)

-1/2
Due to (L),t0 N-Nxz:+c] ,orxr;i< N )alda o tc

with (A.12), give,

• I . . . , . , ; . - . ; . - -
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-- E{ts, <[l-S[C++2c)] [6(5+-Ma + 2) Efe I +YJ
SM sM

2 2 -i-l

< [1-6 2(C++2c)] {[U+Ma2 + 2] [l-(c+l)6] + y} ; VM, VC>O

(A.21)

From lim 2j , from (A.16), and from (A.21), we conclude that, there exists

some bounded constant B, such that,

E{2,1 < B ; WMs, M-

Proof of Lemma 3

As in [2], it can be shown that there exist positive bounded constants

r0 and ;3 such that,

HdM< (Id +  M'Vd ;VM
d,"M- %1 M

Then, from (A.8), we have that, Eft < b M < VM, and

H, H IT < CM E{ I + < CL b <CO
d,M  d,M- sM M MM+ M ; VN (A.22)

d=l

In addition,

M d d M +  HM P(Zd) M
d=1 d=l ?_=2

.M= E{t! } + Z '_M E p(<1d) TdM E s  + Y= H.eN Th,£mt=2 d=l Z=2

= + HM - 71 HI ; VM
s ,M' M ,M l,M

Sincc ii is finite by (A.22), the result follows from the latter equation.

!' r,, t iho r,,m 4 _- P ar t (i)

onir tle quantities defined in the proof of theorem 2. Given M users, we

ill ,,nt, the irbitrary such quantity S (instead of B ). For M. z1, using the
d"4 d

r,,* r i. i l,,:mn.i 3, ad, follwin,; the same approach as in its proof, we obtain,

.4
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E{ ws,M, ' - Xm + T d,M d M (A.23)
d= 1

where for c and p as in (A.9), for p0 as in section 4, and for a- as in theorem 4,

we have,

, ] :Ad + p[L\ + M(l-p )(M ) d (A.24)
r0

-2 (o!) (A.25)

Subst it n expressions (A.20) and (A.25) in (A.23), we obtain,

-1
*:{ r. -1 A 2- o

, {? M ] + + cM(l-p ) MA E{f 2 I +
s," S'K 0s, M

4 . + M(-P0)(Mo 2)] E{sIM}} (A.26)

Usin tLie inequalities in (A.19) and lemmata 1 and 2, we conclude from (A.26) that, for

i*'m,  .: and liN .MY <-, there exists some bounded constant y, such that,

,, ':" VM. Then, lim E(V } <o follows.

We note, that from (A.23), the following inequality evolves easily:

1{ I " > 2-1 2 Ef . (A.27)
s,M' - s,Ml

Proof of iLemma 4+

Given some algoritim in the class, let I k denote the length in (1), as induced

5y the kXA.% oft the algorithm. Let us define,

P,(k N) ;iven M users, given N total arrivals, the probability that k users are
,i: t lye

i=

P M(N 1 Given M users, gio.'en some CRI of length d, the probability that N tota l
arrivals occur within the arrival interval that corresponds to the CRI.

le firqt state and prov a proposition:
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a.'

- - When the users are independent and Poisson, the probability P' Akctn) is

the same with the probability of placinug N objects in at most t cells of an M-cell

capacity buffer, when each of the N objects is placed lolenendently and with probability

M per cell. Then, (A.28) follows trivially.

* Wec can now express the following equation, for x being a nonnegative integer.

PrQC =0) P (Old) =0 ;x =0

Pr> nt,KM'n I sd) = PM(Old) Pr(L (x) + (A.29)

r min (NiN)
+E P (d) 1 (kN) kt) -

M Mk )• P(.2 ) ;

Due to (A.28), due to an-Vk in (1), and from (A.29), we easily conclude,
S t k+1

Pr(L . Lx> -'= d) >Pr( ,0 1x>I n 2=c ;) Vx,Vd

.N e now note that (k MAN) and Pr(L. >x-N) are both decreasing with increasing N.

Then, in wount ion with (I.b) we concu bde that P (t ' tPr(cxN) is also -ecreasirn,

oiL iucreisinK N. In addition, P (Nd) is decreain jg with inlcreasling d. Dip to
M

act fvfe' r wee observe that l'r( dje ) is lereis& with incrposinc b, Ai ol
n ,. n.M-1

• We an w expressiz tht tolwn eqaI,)? for1 x1 beitng a1 nongtXeit r

a,' -r;o O t m (Od)' ;x4

Pr ; Pr K

n, '4. CnlMd PM(0>d) P(O~)+( 9

04

hi i, 'rniN

+.4Mr1 ) Z Mk N r£ k
< xN ~



• " E ~~Pr (l+ '~

n I x 11 2M =d) Pr( n Md) Pr( 1  2M

The last inequality follows by hypothesis, Since 1, and by
lM I 2M

induction, we obtain the result in the lemma; that is,

Sx) Pr(' -

Proof of Lemmar. 5

(i) Due to the result in lenuna 4, we easily conclude that, 'T >(M) >iJ(M+I)

Since 0J) is bounded from below, we alsu concligde,

Ii ,J(M) 1 <1 (A.30)

From lemma 4, we also conclude,

:x+i x+l

Udj(M) 7 dJ(M+l) (A.31)'-i d=l

ID1e to (A.31), we have,

:<+1 x
I i: E ,i (- T x+la(M)+ E ' d,J(M) (A.32)

a) ie to (A. 32) , and by induction, we easily conlude that 7 converges, for every- x, J(M)

7in - - <o " Vx (A. 3 V

, ,,J(M) xM

* ,r ir ;i tr rv n, we have,

* , " I 1(M '1- * .\. ,

, ,n ;,i,n*J t hat 1 . Then, we haveO 1 t., I ' h ih l

"'"" nil-(" : )] ; V . " I . Sinco the above hold, tr

@4



:1.

Irjitr : t CEEC lude lin d TdJ(M) . Thus, If (19) holds, then
t d=l

" p-scut , cotradiction. Therefore, subject to (19), we have:

SZt = 1 (A.35)

'ir. tc (A. i1) and (A.35), we conclude,

d 'd,J(M) Vn, vii (A.36)
d=1 d=n

.\:pping<i (A.36), we obtain,

d ) Z Z L L~ drT VIM (A.37)d'J(MI) : d,J(M) < d F- d d ;VI(.7

d:]' n=l d=n n=l d=n d=l

n-i 1 d mdJ(M) - dnd-+) <  d
_ dl

17 < ld d-, < dr VN(.8

"AL a, - dJ(M) d

,M--d: d=l d=l

Zi- Z ~Y! JTd < lrn <dr dTr d~ • VN (A.38)

- ;A ir (A.-3 ), %e conclude (20).

i'r... : , i c r::i 4 - Part (ii)

"11' co>liti,n Lim k- I Lk <-' in (1), implies lir k - I k <-. The latter means
ilmk- LThs

,r. .::i t.; .... r mite positive constant n, such that, krm L =n. Thus,

, l 1S ',)1, such that,

' fl k (A.39)

0- ' - ] - 1., ) (A.AO)i!K
-i , .',(A..41)

0 ' L, , . . , : , t m ml f : " m :' m
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We note that rq<c, where c is as in (A.9). We now state the following theorem.

U Theorem A

Consider Poisson users. If there are M such users in the system, let X be the

Poisson intensity per user. As M varies, let the product MX, remain fixed and equal
to 5. If, for c as in (A.41),

6>X+E, then lim E{Z }'

rjN Proof

We will prove the theorem by contradiction. Let lim E{t sM}<c and let the
sM

quantities Ld and p(kld) in (3) and (4), be denoted instead Ld,M and pM(kld), to

indicate explicitly the number of users in the system. Then, considering (A.39)

and (A.40), and for p0 in (4) equal to exp{-I M } here, when the user population is M,

we obtain,
J(M) -6d

*I L dJ(M)= E Lk PM(kld) > (q- )il-exp{j-j)}]-
k=0

06d
[l-exp{-j-)}] (A.41)

S; where J(M) is as in (18).

Let us now select i Q-l)>l. Then, there exists a, such that,

Sdd

I-exp{- 'M)} > (6-i) d V d 0<d<c J(M) (A.42)
(M 'IJ(M)_

Then, (A.41) gives:

~6dLdJ(M)_> n(6-r )d - O[l-exp{- 6d (A.43)

03(M) -- 1 (M) (.3

E~ s j .M ,r1(-l 1 dTTd J M - [ -exp{- 6dd. J dM l  d= d,J(M) (M)

r(-.1 )[E [I- - dI- -(-
JM,J "J( d=dj(M)+l JM(M)) 1 p ,(M)

(A.44)

. . .. . . . . . . . .-.. . . .
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But,

ir ddJ(M) lir d1d,J(M) Vc (A.45)

M- d=-XJ(M)+l M- d=c

In addition, since by hypothesis lir E{t ( } <-, and from lemma 5,we have

.s,J(M)

that, given v>0, there exists c(v), such that,

.rnim drd  < V g c > c(V) (A.46)
! " F t- d=c , ( ) '-

From (A.45) and (A.46), wo co:nclude,

lim 2 + drd, =0 (A.47)

M- d=cJ(M)+i J(M)

and thus,

'im d J(M) 0 (A.48)

M- d=aJ(M)+l d ,

It can be seen that,

M- o d=1 d=N+l

Therefore, due to (A.47), we conclude,

6d
lrn -Td',J(M) [J-expf- 1] 0 (A.49)

,'-X-- d= i

:ic1, from (A.44), (A.48), and (A.49), we obtain,

r- lir E"1 -i ) lrn E{} (A.50)
"'-s, I(M) -

-M S,J(M)

" (A.50) contradicts the hypothesis. Thus, lir E{f f

., l t,, thlw,,rem is complete.

i,.,, r, t~h, iu,,ia itv in (A.27), we have,

I ir : (A. 1)

, A. A) mi thro ., wo con,] uric that for anv 1>m. lim E{V , and the

-r:*,r t . rt ( i ) in theWorm 4 i- nOW complete.

0 - . - -
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